Center Manifolds for Quasilinear Reaction-diiusion Systems
نویسنده
چکیده
We consider strongly coupled quasilinear reaction-diiusion systems subject to nonlinear boundary conditions. Our aim is to develop a geometric theory for this type of equations. Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main result we establish the existence and attractivity of center manifolds under suitable technical assumptions. The technical ingredients we need consist of the theory of strongly continuous analytic semigroups, maximal regularity, interpolation theory and evolution equations in extrapolation spaces.
منابع مشابه
Center Manifolds for Quasilinear Reaction-diffusion Systems
We consider strongly coupled quasilinear reaction-di↵usion systems subject to nonlinear boundary conditions. Our aim is to develop a geometric theory for these types of equations. Such a theory is necessary in order to describe the dynamical behavior of solutions. In our main result we establish the existence and attractivity of center manifolds under suitable technical assumptions. The technic...
متن کاملStable and Unstable Manifolds for Quasilinear Parabolic Problems with Fully Nonlinear Dynamical Boundary Conditions
We develop a wellposedness and regularity theory for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Moreover, we construct and investigate stable and unstable local invariant manifolds near a given equilibrium. In a companion paper we treat center, center–stable and center–unstable manifolds for such problems and investigate their stability p...
متن کاملAn Asymptotic and Numerical Description ofSelf - Similar Blow - up in
We study the blow-up behaviour of two reaction-diiusion problems with a quasilinear degenerate diiusion and a superlinear reaction. We show that in each case the blow-up is self-similar, in contrast to the linear diiusion limit of each in which the diiusion is only approximately self-similar. We then investigate the limit of the self-similar behaviour and describe the transition from a stable m...
متن کاملCenter Manifolds and Attractivity for Quasilinear Parabolic Problems with Fully Nonlinear Dynamical Boundary Conditions
We construct and investigate local invariant manifolds for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions and study their attractivity properties. In a companion paper we have developed the corresponding solution theory. Examples for the class of systems considered are reaction–diffusion systems or phase field models with dynamical boundary co...
متن کاملCenter stable manifolds for quasilinear parabolic pde and conditional stability of nonclassical viscous shock waves
Motivated by the study of conditional stability of traveling waves, we give an elementary H2 center stable manifold construction for quasilinear parabolic PDE, sidestepping apparently delicate regularity issues by the combination of a carefully chosen implicit fixed-point scheme and straightforward time-weighted Hs energy estimates. As an application, we show conditional stability of Laxor unde...
متن کامل